1° Partie : Mouvement parabolique

Objectif:

On se propose de déterminer les équations horaires et l'équation de la trajectoire d'un mouvement parabolique acquis avec une webcam.

On pourra soit étudié le mouvement parabolique d'une boule de pétanque à partir d'images numérisées que l'on trouvera dans le sous répertoire *Clips vidéoTS* du répertoire *Mes documents* ; soit filmer et numériser un mouvement en lançant une boule dans le laboratoire.

On en déduira les paramètres du lancer : angle de tir α et la vitesse initiale v₀ et une mesure de g.

I. Manipulation.

Lancer le logiciel Aviméca et charger, la vidéo à exploiter :

- Adapter la taille à la fenêtre de travail,
- Fixer l'échelle et le repère,
- Pointer les positions de l'objet les uns après les autres,
- Copier les tableaux de valeurs dans le tableur.

II. Exploitation

- 1. Graphe y = f(x)
 - Sélectionner les colonnes x et y.
 - Réaliser le graphique en utilisant le mode nuage de points. Donner un titre au graphe et aux axes.
 - Ajouter une courbe de tendance. (choisir le degré de l'équation puis dans les options, afficher l'équation sur la courbe)
 - En déduire l'angle de tir α en comparant cette équation avec les équations du cours.

2. graphe x = f(t)

- Sélectionner les colonnes t et x et afficher le graphe x = f(t)
- En procédant comme précédemment , déduire la vitesse initiale v₀.

3. graphe y = f(t)

- En procédant comme précédemment, déduire une valeur de g.

On pourra aussi afficher les graphes $v_x = f(t)$ ou $v_y = f(t)$.

Conclusion : les équations vues en cours sont – elles vérifiées ?

2° Partie : Trajectoire d'un projectile lancé avec une vitesse initiale V0 pour différents angles de tir

objectif

Utiliser un logiciel de simulation pour étudier l'influence de l'angle de tir sur la trajectoire d'un projectile.

Protocole

On simule le lancement d'un projectile de 1 kg avec une vitesse initiale de 15 m.s⁻¹. Compléter le tableau suivant qui donne les composantes de la vitesse sur les axes Ox (horizontal) et Oy (vertical ver le haut) pour différents angles de tir.

α(°)	20	30	45	60	80
$V_{X}(m.s^{-1})$					
V _Y (m.s ⁻¹)					

- 1. Lancer le logiciel « Dynamic »
- 2. Dans le menu Dessin, choisir couleur. Sélectionner le noir et OK.
- 3. Dans le menu Dessin, choisir Arrière-plan. Sélectionner le blanc et OK.
- 4. Dans le menu Initialiser, choisir Origine. Cliquer en bas à gauche du cadre jaune à environ 1,5 cm du bas et 1,5 cm de la gauche. *(le point G apparaît)*.
- 5. Dans le menu Initialiser, choisir Tracé des axes. (Ox et Oy sont tracés).
- 6. Dans le menu Champ, choisir g. (un vecteur champ est tracé).
- 7. Dans le menu Initialiser, choisir Vitesse puis Modifier. Taper les valeurs de V_x et V_y calculés pour le 1° angle puis OK. (Attention à la virgule !!). (*un vecteur V*₀ est tracé).
- 8. Dans le menu Trajectoire, choisir Tracé. (la courbe est tracée).
- 9. Reprendre les étapes 7 et 8 pour les autres angles. (les autres courbes se superposent).
- 10. Faire une impression d'écran dans le presse papier avec la touche « impr écran ».
- 11. Ouvrir Word et coller deux fois l'écran avant de faire une impression.
- 12. Identifier sur les courbes, les angles de tir.

Questions :

- 1. La hauteur maximale atteinte par le projectile dépend-elle de l'angle de tir ?
- 2. Comment varie, en fonction de l'angle de tir, la distance parcourue horizontalement par le projectile ?

T.P IV 3

Click gauche pour sélectionner une option

Sans nom 08/12/02 MAJ NUM